Copied to
clipboard

G = C42.148D6order 192 = 26·3

148th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.148D6, C6.952- 1+4, C6.1302+ 1+4, (C4×S3)⋊1Q8, C12⋊Q835C2, D6.4(C2×Q8), C4.39(S3×Q8), C4⋊C4.111D6, C12.50(C2×Q8), C42.C24S3, C122Q832C2, D6⋊Q8.2C2, Dic3.6(C2×Q8), C2.55(D4○D12), C6.42(C22×Q8), Dic3.Q832C2, (C2×C6).233C24, (C2×C12).87C23, C422S3.6C2, D6⋊C4.39C22, C4.D12.11C2, C2.57(Q8○D12), C4.Dic633C2, (C4×C12).193C22, C4⋊Dic3.240C22, C22.254(S3×C23), (C2×Dic6).40C22, Dic3⋊C4.122C22, (C22×S3).220C23, C34(C23.41C23), (C2×Dic3).121C23, (C4×Dic3).140C22, C2.25(C2×S3×Q8), (S3×C4⋊C4).11C2, C4⋊C47S3.12C2, (C3×C42.C2)⋊6C2, (S3×C2×C4).124C22, (C3×C4⋊C4).188C22, (C2×C4).203(C22×S3), SmallGroup(192,1248)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.148D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.148D6
C3C2×C6 — C42.148D6
C1C22C42.C2

Generators and relations for C42.148D6
 G = < a,b,c,d | a4=b4=1, c6=d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=c5 >

Subgroups: 480 in 206 conjugacy classes, 103 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic6, C4×S3, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C42.C2, C42.C2, C4⋊Q8, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D6⋊C4, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, S3×C2×C4, C23.41C23, C122Q8, C422S3, C12⋊Q8, C12⋊Q8, Dic3.Q8, C4.Dic6, S3×C4⋊C4, C4⋊C47S3, D6⋊Q8, C4.D12, C3×C42.C2, C42.148D6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C24, C22×S3, C22×Q8, 2+ 1+4, 2- 1+4, S3×Q8, S3×C23, C23.41C23, C2×S3×Q8, D4○D12, Q8○D12, C42.148D6

Smallest permutation representation of C42.148D6
On 96 points
Generators in S96
(1 20 70 48)(2 37 71 21)(3 22 72 38)(4 39 61 23)(5 24 62 40)(6 41 63 13)(7 14 64 42)(8 43 65 15)(9 16 66 44)(10 45 67 17)(11 18 68 46)(12 47 69 19)(25 53 87 77)(26 78 88 54)(27 55 89 79)(28 80 90 56)(29 57 91 81)(30 82 92 58)(31 59 93 83)(32 84 94 60)(33 49 95 73)(34 74 96 50)(35 51 85 75)(36 76 86 52)
(1 35 7 29)(2 92 8 86)(3 25 9 31)(4 94 10 88)(5 27 11 33)(6 96 12 90)(13 74 19 80)(14 57 20 51)(15 76 21 82)(16 59 22 53)(17 78 23 84)(18 49 24 55)(26 61 32 67)(28 63 34 69)(30 65 36 71)(37 58 43 52)(38 77 44 83)(39 60 45 54)(40 79 46 73)(41 50 47 56)(42 81 48 75)(62 89 68 95)(64 91 70 85)(66 93 72 87)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 14 19 20)(15 24 21 18)(16 17 22 23)(25 88 31 94)(26 93 32 87)(27 86 33 92)(28 91 34 85)(29 96 35 90)(30 89 36 95)(37 46 43 40)(38 39 44 45)(41 42 47 48)(49 82 55 76)(50 75 56 81)(51 80 57 74)(52 73 58 79)(53 78 59 84)(54 83 60 77)(61 66 67 72)(62 71 68 65)(63 64 69 70)

G:=sub<Sym(96)| (1,20,70,48)(2,37,71,21)(3,22,72,38)(4,39,61,23)(5,24,62,40)(6,41,63,13)(7,14,64,42)(8,43,65,15)(9,16,66,44)(10,45,67,17)(11,18,68,46)(12,47,69,19)(25,53,87,77)(26,78,88,54)(27,55,89,79)(28,80,90,56)(29,57,91,81)(30,82,92,58)(31,59,93,83)(32,84,94,60)(33,49,95,73)(34,74,96,50)(35,51,85,75)(36,76,86,52), (1,35,7,29)(2,92,8,86)(3,25,9,31)(4,94,10,88)(5,27,11,33)(6,96,12,90)(13,74,19,80)(14,57,20,51)(15,76,21,82)(16,59,22,53)(17,78,23,84)(18,49,24,55)(26,61,32,67)(28,63,34,69)(30,65,36,71)(37,58,43,52)(38,77,44,83)(39,60,45,54)(40,79,46,73)(41,50,47,56)(42,81,48,75)(62,89,68,95)(64,91,70,85)(66,93,72,87), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,14,19,20)(15,24,21,18)(16,17,22,23)(25,88,31,94)(26,93,32,87)(27,86,33,92)(28,91,34,85)(29,96,35,90)(30,89,36,95)(37,46,43,40)(38,39,44,45)(41,42,47,48)(49,82,55,76)(50,75,56,81)(51,80,57,74)(52,73,58,79)(53,78,59,84)(54,83,60,77)(61,66,67,72)(62,71,68,65)(63,64,69,70)>;

G:=Group( (1,20,70,48)(2,37,71,21)(3,22,72,38)(4,39,61,23)(5,24,62,40)(6,41,63,13)(7,14,64,42)(8,43,65,15)(9,16,66,44)(10,45,67,17)(11,18,68,46)(12,47,69,19)(25,53,87,77)(26,78,88,54)(27,55,89,79)(28,80,90,56)(29,57,91,81)(30,82,92,58)(31,59,93,83)(32,84,94,60)(33,49,95,73)(34,74,96,50)(35,51,85,75)(36,76,86,52), (1,35,7,29)(2,92,8,86)(3,25,9,31)(4,94,10,88)(5,27,11,33)(6,96,12,90)(13,74,19,80)(14,57,20,51)(15,76,21,82)(16,59,22,53)(17,78,23,84)(18,49,24,55)(26,61,32,67)(28,63,34,69)(30,65,36,71)(37,58,43,52)(38,77,44,83)(39,60,45,54)(40,79,46,73)(41,50,47,56)(42,81,48,75)(62,89,68,95)(64,91,70,85)(66,93,72,87), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,14,19,20)(15,24,21,18)(16,17,22,23)(25,88,31,94)(26,93,32,87)(27,86,33,92)(28,91,34,85)(29,96,35,90)(30,89,36,95)(37,46,43,40)(38,39,44,45)(41,42,47,48)(49,82,55,76)(50,75,56,81)(51,80,57,74)(52,73,58,79)(53,78,59,84)(54,83,60,77)(61,66,67,72)(62,71,68,65)(63,64,69,70) );

G=PermutationGroup([[(1,20,70,48),(2,37,71,21),(3,22,72,38),(4,39,61,23),(5,24,62,40),(6,41,63,13),(7,14,64,42),(8,43,65,15),(9,16,66,44),(10,45,67,17),(11,18,68,46),(12,47,69,19),(25,53,87,77),(26,78,88,54),(27,55,89,79),(28,80,90,56),(29,57,91,81),(30,82,92,58),(31,59,93,83),(32,84,94,60),(33,49,95,73),(34,74,96,50),(35,51,85,75),(36,76,86,52)], [(1,35,7,29),(2,92,8,86),(3,25,9,31),(4,94,10,88),(5,27,11,33),(6,96,12,90),(13,74,19,80),(14,57,20,51),(15,76,21,82),(16,59,22,53),(17,78,23,84),(18,49,24,55),(26,61,32,67),(28,63,34,69),(30,65,36,71),(37,58,43,52),(38,77,44,83),(39,60,45,54),(40,79,46,73),(41,50,47,56),(42,81,48,75),(62,89,68,95),(64,91,70,85),(66,93,72,87)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,14,19,20),(15,24,21,18),(16,17,22,23),(25,88,31,94),(26,93,32,87),(27,86,33,92),(28,91,34,85),(29,96,35,90),(30,89,36,95),(37,46,43,40),(38,39,44,45),(41,42,47,48),(49,82,55,76),(50,75,56,81),(51,80,57,74),(52,73,58,79),(53,78,59,84),(54,83,60,77),(61,66,67,72),(62,71,68,65),(63,64,69,70)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C···4H4I4J4K···4P6A6B6C12A···12F12G12H12I12J
order1222223444···4444···466612···1212121212
size1111662224···46612···122224···48888

36 irreducible representations

dim11111111111222244444
type++++++++++++-+++--+-
imageC1C2C2C2C2C2C2C2C2C2C2S3Q8D6D62+ 1+42- 1+4S3×Q8D4○D12Q8○D12
kernelC42.148D6C122Q8C422S3C12⋊Q8Dic3.Q8C4.Dic6S3×C4⋊C4C4⋊C47S3D6⋊Q8C4.D12C3×C42.C2C42.C2C4×S3C42C4⋊C4C6C6C4C2C2
# reps11132111221141611222

Matrix representation of C42.148D6 in GL6(𝔽13)

1200000
0120000
000080
000008
008000
000800
,
500000
880000
0010700
006300
0000107
000063
,
12110000
110000
00001212
000010
001100
0012000
,
120000
12120000
000011
0000012
00121200
000100

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,8,0,0,0,0,0,0,8,0,0],[5,8,0,0,0,0,0,8,0,0,0,0,0,0,10,6,0,0,0,0,7,3,0,0,0,0,0,0,10,6,0,0,0,0,7,3],[12,1,0,0,0,0,11,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,12,1,0,0,0,0,12,0,0,0],[1,12,0,0,0,0,2,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,1,0,0,0,0,0,1,12,0,0] >;

C42.148D6 in GAP, Magma, Sage, TeX

C_4^2._{148}D_6
% in TeX

G:=Group("C4^2.148D6");
// GroupNames label

G:=SmallGroup(192,1248);
// by ID

G=gap.SmallGroup(192,1248);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,675,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽